

Application Note How to use the TOMBAK as an AWG (Arbitrary Waveform Generator)

Multiboard Series

TOMBAK : Synchronization electronic board

How to use the TOMBAK as an AWG (Arbitrary Waveform Generator)

<u>Pre-requirement:</u> Before using the TOMBAK board, make sure you followed all the instructions mentioned in the Operating Manual

1. Introduction

When used as an AWG, TOMBAK can generate special pulse waveforms with up to 4000 steps of down to 5 nanosecond.

TOMBAK, can also be used to generate Burst pulses with non-repetitive frequency and/or with adjustable amplitude.

The Shape-OUT SMA connector can be connected to the analog input of a dedicated external modulation instrument like an AOM (acousto-optic modulator), an EOM (electro-optic modulator), a SOA, a scanning system or a laser...

It is thus possible to create some Burst with nearly any shape and number of pulses up to 4000 pulses per Burst.

This is particularly interesting within a mode locked laser with MOPA configuration when someone wants to generate some burst from the oscillator part. Generating special exponential Burst shape can pre-compensate the deformation of the burst through the amplifiers and help maintaining a nice shape at the output of the MOPA laser.

2. Timing diagrams

Figure 1 : Analog (Shape-OUT) and digital (Pulse-Out) outputs with amplitude, delay and pulse width adjusted signals from input

Figure 2 : Main firmware features used in AWG / Burst shaper mode (dashed lines are optional)

4. Cabling

The steps given below in () are optional and link to previous configuration described in § Erreur ! Source du renvoi introuvable. **p.** Erreur ! Signet non défini. (Gate feature), in § Erreur ! Source du renvoi introuvable. **p.** Erreur ! Signet non défini. (Burst generator using the Gate input), and in § Erreur ! Source du renvoi introuvable. **p.** Erreur ! Signet non défini. (Frequency divider).

- 1. Plug the USB-Jack cable in the "USB In" connector
- 2. (Plug your reference signal (clock) in the "Pulse In" SMA connector)
- 3. (Plug your trigger/gate signal in the "Gate In" SMA connector)
- 4. The signal will output on the "Shape Out" SMA connector
- 5. Finally, plug the power supply to the "*Power In*" connector to power on the board

5. Software configuration

Launch the Aerodiode Control Software and click on *Connect* to start the Tombak hardware detection. The software automatically detects the Tombak board.

A window will appear for each Tombak connected to the computer.

The main configuration windows must be configured as follow :

PDG 19E02 - Line 1 - Alphanov Control Software											
File Config Info											
Working Mode											
On Off	On	Off	On Off								
Board	Shaper		Inverse								
High Pick	Gen	Sync	AI PhA NOV								
Advanced Mode Centre Technologique Optique et Lasers											
Input Pulse											
0,000 V	• •	200,000000 MHz									
Threshold		Pulse Freq.									
8	÷	Direct	aisy Intern Phot.								
Division		Source									
Synchro Input											
Int Ext None Gate Burst Soft											
Synchro Source Mode Trigger											
100,000 kHz 🛨 SMA Daisy 1 🛨											
Frequency Gate Source Burst Size											
Ouput Pulse											
25 ns 🔺	71,0	0 ns 🕂	0,00 ns 📩								
Width	Delay		Auto Fine Delay 📕								
Synchro Output											
Sync Trig	Delay	Pulse									

- Working Mode window :
 - Set the **Board** On
 - Set the **Shaper** button to **On**
 - Set the **Inverse** button to **Off** unless you need to invert the output signal
 - Set Advanced Mode to Nothing (use external clock) or Gen (use 200MHz internal frequency)
- Input pulse window :
 - (Configure the Threshold voltage so that the input pulse frequency is detected and equal to your pulse generator system)
 - Set the Division factor according to your application
 - Set the input pulse **Source** to **Direct**

- Output Pulse window :
 - Choose the output delay value
 - Choose the output **pulse width**
 - Auto Fine Delay may be let in auto mode or manual if you need to adjust the fine delay from reference signal to each shape point (see Figure 1).
- Configure shape :
 - Open the shaper config window by clicking on the "Shaper Config" in the bar menu

• The following window will appear. Load a .csv file by cliking on Load

• The .csv file should be like this (example and explanation) :

1	4	1	Number of points - 1								
2	1000	2	Value	in	bit	for	1st	point	(from 0	to	4095)
3	3000	3	Value	in	bit	for	2nd	point	(from	0 to	4095)
4	4095	4	Value	in	bit	for	3rd	point	(from	0 to	4095)
5	500	5	Value	in	bit	for	4th	point	(from	0 to	4095)
6	0	6									
7		7									

Please note that repetitive values of 0 could be used to make non-uniform period between pulses.

The maximum number of points is 4000.

- The **number of points, called steps**, should be automatically detected after uploaded the file
- The step size should be leave to 1 or could be higher if you want to change the point after several reference pulses (for example a step size of 2 will change the level one time for two pulses

Don't forget to save the settings by clicking on the "Save" button in the bar menu.

