AOM

Fiber-coupled Acousto-Optic Modulator

AOM

Precision fiber-coupled Acousto-Optic Modulator

with RF-drivers and optional synchronization tools.

Designed to offer an optimized solution for amplitude modulation of fiber laser light, this fiber-coupled AOM is available at 1030/1064 or 1550 nm. It is an easy-to-implement solution allowing direct control of the timing, intensity, and temporal shape of the laser output. This fiber-coupled light modulation solution requires an RF driver which is offered in either digital Input (TTL) or analog-input configuration.

Key features:

- These devices are ideal tools for modulating the intensity of light down to the nanosecond timing range
- It is compatible with most of Q-switching or Pulse-picking applications needs.
- Down to 10 ns rise/fall time
- Low insertion loss down to 1.2 dB

- 2 AOM versions for 1030/1064 nm light and 2 AOM versions for 1550 nm light
- 3 RF driver versions with digital and/or analog inputs
- These products can also be used as a fixed frequency shifter. It slightly shifts the central optical wavelength by a fixed value equal to the RF frequency (80, 100 or 200 MHz).

Technical Specifications

Aerosjoole Manager State of the State of the

RF Driver - std version (TTL or analog).

200 ns output optical pulse shape (high speed AOM version).

RF driver: Special version able to combine digital (TTL) and analog inputs.

AOM Modules performances :

modules periormanees.				
	1064AOM-1	1064AOM-2	1550AOM-1	1550AOM-2
Version type	standard	high speed	standard	high speed
Wavelength range	1000 - 1090 nm		1520 - 1580 nm	
Max average power	5 W		0.5 W	
Insertion loss (typ)	1.2 dB	2.5 dB	2.5 dB	4.5 dB
Rise time (10-90%) - max values	50 ns	10 ns	50 ns	10 ns
RF Frequency	100 MHz	200 MHz	80 MHz	200 MHz
Fiber: type / coating /pigtail	PM980 / 900 μm / FC-APC		PM1550 / 900 μm / FC-APC	
Dimensions (mm)	60*25*12.5	67*23*15	60*25*12.5	45*28*12

Classification:

Name	1064nm LD :		
AOM version :	1 : Standard 2 : High speed		
RF Driver Version :	T : Standard digital (TTL input) A : Standard analog (0-5V analog input) TA : Special (TTL and analog inputs)		
TOMBAK (option)	Tombak (unique model)		

TOMBAK is an optional pulse delay generator (with a photodiode compatible input). It is ideal for complex synchronization needs like pulse-picking a mode-locked laser.

Ordering information (AOM part):

Ordering information (RF Driver part):

Ordering information (Optional TOMBAK pulse delay generator synchronization tool):

TOMBAK (unique model version)

