教程:光纤耦合半导体激光管基础
光纤耦合半导体激光管:本教程概述了光纤耦合半导体激光管的技术特性。 本教程介绍了各种系列的半导体激光管,例如DFB 半导体激光管,或多发射器高功率半导体激光管。
完整 PDF 版本:光纤耦合半导体激光管
介绍
如今,半导体激光管无处不在。 它们是将电能转化为激光功率的最简单元件。 半导体激光管基于多种半导体组装材料(GaAs、InP 或其他更复杂的结构,如 GaN)。 单模半导体激光管是低功率半导体激光管(通常<1W),而多模半导体激光管是功率更高的器件(通常>10 W 到几 kW)。
光纤
重要的是要知道两种类型的有源光纤,它们通常用于耦合从半导体激光管进来的光。
- 单模光纤的纤芯通常为几微米(例如,波长为1微米的纤芯约为6微米,而波长为1.5微米的约为9微米)。
- 多模光纤是直径较大的光纤,可以处理更高水平的光功率。 标准版本纤芯直径通常为62、100、200、400、800 ,甚至到>1000 µm。 直径越小,就越容易用透镜或显微镜物镜将来自光纤的光线聚焦到一个小点上。
保偏光纤:单模半导体激光管可以是标准 (SMF) 的或保偏 (PM)版本。 在保偏版本中,光纤具有特殊的包层结构,可以在整个光纤长度上保持光的偏振。
下表显示了Corning公司提供的各种型号的单模保偏光纤特性。 可以看到,随着波长的减小,纤芯直径变得非常小。 表中需要注意的一个数据点是截止波长。 当考虑到其截止波长和该截止波长1.5倍之间的波长时,单模光纤运行良好。 低于此范围,光纤会变成多模光纤,高于此范围,在弯曲光纤时,光很容易离开光纤。
单模光纤耦合半导体激光管
该类型的半导体激光管通常组装在一个“蝶形”封装中,封装中集成了一个 TEC温控冷却器和一个热敏电阻(如今的趋势是朝着更小的外形尺寸发展)。 单模光纤耦合半导体激光管通常能够达到几百mW到 1.5 W的输出功率。
蝶形封装光纤耦合半导体激光管是一种复杂的器件,具有许多不同的引脚配置和接地配置(全浮空、阳极接地等)。 在给定的驱动器上组装蝶形封装需要一些验证。
市场上还有其他几种封装形式。 例如,在电信市场上经常遇到的下列DIL封装或同轴封装,< 其功率通常为10mW。
当今低功率电信或激光雷达市场的半导体激光管制造商的趋势是开发小尺寸外形,但也包括了 TEC(半导体制冷器)、热敏电阻和 BFM 的新型同轴封装:
下图显示了市场上常见的 3 类半导体激光管。 VCSEL半导体激光管一般不进行光纤耦合。 它们是大型扩散传感应用中常见的半导体激光管类型,例如计算机鼠标设备或智能手机 3D 传感面部识别。
DFB 和 Fabry-Perrot 边缘发射器,通常是光纤耦合的,描述如下:
a) 带或不带布拉格光栅的法布里珀罗半导体激光管
“标准”光纤耦合半导体激光管是一种常见的部分反射半导体腔,其中背面具有高反射涂层,而正面具有部分反射涂层。 典型的半导体激光管芯片尺寸约为 1*0.5*0.2mm。
主要典型特征如下:
- 功率范围可以达到>单模 1.5 W(多模版本见下文)
- 带宽通常很宽(> 1nm)
- 输出光束为椭圆形。
为了降低发射带宽并提高半导体激光管的整体稳定性,半导体激光管制造商通常在输出光纤内添加光纤布拉格光栅。
布拉格光栅在一个非常精确的波长上为半导体激光管增加了百分之几的反射率。 这会让半导体激光管的发射带宽整体减小。 在没有布拉格光栅的情况下发射带宽通常为 3-5 nm,而在有布拉格光栅的情况下要窄得多(~< 0.1nm)。 在没有布拉格光栅的情况下波长光谱温度调谐系数通常为 0.35 nm/°C,而在有布拉格光栅的情况下该值要小得多。
915/976/1064 nm 单模泵浦半导体激光管的主要供应商是那些在九十年代末在电信市场发展光纤放大器(EDFA:掺铒光纤放大器)业务的公司。 这些供应商值得信赖,因为他们的产品产量高,所以成本适中。
b) DBR 或 DFB 半导体激光管
DBR 或DFB 半导体激光管器件将布拉格光栅波长稳定部分直接集成到半导体激光管芯片部分。 这为DFB提供了一个更窄的发射波长,通常为1MHz(即~10-5nm),而不是带有布拉格光栅的法布里-佩罗特的~0.1nm。
c) 脉冲特性/增益切换
对从光纤耦合半导体激光管进来的光进行调制的一个简单解决方案是使用脉冲控制电子电流驱动器进行直接调制。 下面是一个3纳秒脉冲宽度的例子。 可以在脉冲开始时看到增益开关峰值。 这是半导体激光管内载流子的弛豫过程。 如果想隔离这个增益开关的峰值脉冲,获得100皮秒的脉冲,增益开关的峰值就会派上用场。 但增益开关峰值通常是一个不受欢迎的特性(见下文)。
世界上很少有公司专门生产商用半导体激光管脉冲驱动器。 然而,短脉冲宽度下的脉冲形状以及上升/下降时间和抖动水平在不同的制造商之间可能有很大差异。 此外,还有许多关键特征和附加功能,在不同的制造商之间有所不同。 同时,也要考虑使用的方便性。
带宽限制是“驱动侧”电子设备速度和交替端半导体激光管的电感造成的。 许多供应商在开/关切换模式下可以达到每安培 5 纳秒的上升/下降时间。 然而,在开发脉冲驱动器时,将模块化、易用性和高性能水平相结合是最困难的部分。
AeroDIODE 提供多种开/关半导体激光管开关驱动器型号,开关速度从 3 纳秒/A 到小于 0.5 纳秒/A。
另一种用于直接半导体激光管调制的高性能产品称为“脉冲整形器”。 它包括一个内部 AWG(任意波形发生器),能够以 48 dB 振幅分辨率和 500 皮秒的时间分辨率对半导体激光管输出进行整形。 详见高速半导体激光管驱动器。
该脉冲整形器模块允许用户使用高带宽 AWG 自定义脉冲形状,并生成所需的定制光脉冲形状。 如下图所示,该模块还有一个特殊的内部功能,允许用户减小增益开关峰值:
d) 光谱特性
在讨论脉冲半导体激光管发射光谱的演变时,用户应了解两种不良的光谱效应:
- 第一个与半导体激光管“锁定”其布拉格锁定元件所需的时间相关。 这种锁定对于DFB来说是即时的,但对于基于布拉格光栅的半导体激光管来说,往往需要100纳秒以上的时间。 换句话说,当脉冲光栅稳定半导体激光管时,第一个纳秒会产生宽发射光谱,就像没有布拉格光栅一样。 一些供应商提供了一种名为“布拉格光栅靠近芯片”的折中解决方案,只需几纳秒即可锁定。
- 另一个不可避免的影响来自频率/相位谱和强度分布的耦合。 更具体地说,发射光谱会随着脉冲长度而变化,这有时会成为问题。 例如,使用SOA外部调制这一智能解决方案可以避免这种影响。 请参阅我们的教程:高速光纤调制器基础,详细比较四种常用的外部调制激光技术。
下图表 1 概述了这些光谱演变效应 – 温度或电流水平 – 这取决于半导体激光管技术( DFB 半导体激光管或Fabry-Perrot 半导体激光管):
表 1:Fabry-Perrot 和基于 DFB 的半导体激光管光谱演变比较:
峰值波长演变… | 法布里-佩罗 | DFB |
温度 | ~ 0.35 nm/°C | ~ 0.06 nm/°C |
电流水平 | ~ 5 nm/A | ~ 1 nm/A |
因此,法布里-珀罗输出芯片的光谱演变通常为 0.35 nm/°C 和 5 nm/A。 当布拉格光栅锁定自身的窄峰波长包含在芯片峰值发射波长±5nm的波长范围内时,就能达到良好的光谱稳定性。
值得注意的是,在脉冲状态下驱动的法布里-珀罗半导体激光管的光谱特性会在前 100 秒 ns 中显示出演变。 下图显示了此类带宽的一些测量曲线。
因此,即使使用布拉格光栅,DFB 半导体激光管的光谱带宽在CW模式下要比 Fabry-Perrot 激光器窄得多。
DFB 还显示出发射波长随温度和电流水平的变化。 这些参数远低于 Fabry Perrot 技术版本,下面会进行比较。
在考虑短脉冲时观察发射带宽的演变也很有趣。 我们可以注意到,在短脉冲模式下,只有当电流水平保持在 200 mA 以下时,发射带宽才会保持窄脉宽(0.2 A 脉冲下,此处观察到的 OSA 最小分辨率为 0.04 nm)。 然而,当考虑更高的峰值电流时,我们开始观察到一个明显的带宽演变。
e) 驱动单模半导体激光管
以连续/脉冲方式驱动单模半导体激光管是一项艰巨的任务,需要专门的产品。 以下是专为研发和全光子系统集成而设计的三款半导体激光管驱动器。 所有这些驱动器都包括一个 TEC 控制部分,用户可自定义半导体激光管温度。
- AeroDIODE的 CCS是一款带 TEC 控制的脉冲/连续半导体激光管驱动器。 该脉冲半导体激光管由内部的板载脉冲发生器或外部TTL信号提供精确脉冲。 它与大多数可用的单模半导体激光管外形尺寸兼容。 蝴蝶半导体激光管可在任何频率和任何占空比下以连续或脉冲方式驱动, 重复率最高可达250 MHz。 参考此产品页面:脉冲半导体激光管驱动器
- AeroDIODE的中央板有一个针对低噪声连续驱动优化的半导体激光管通道和一个针对连续和纳秒短脉冲优化的通道。 它还有许多与光纤激光器相关的功能,例如多个光电二极管输入。 中央板可以作为光纤激光器的“控制中心”。 中央板有 50 多种高科技功能,为构建和整合光纤激光器进行了优化。 请参阅此产品页面:光纤半导体激光管驱动器。
- Shaper 板是 AeroDIODE 提供的另一款驱动器,它可以解决上面的许多问题:如预补偿脉冲形状,和抑制增益开关。 由于其内部 AWG(任意波形发生器)每500ps产生一个动态范围为48dB的电流强度值,因此可以将波形调整到非常短的脉冲宽度。 它还包含 3 个脉冲延迟发生器输出。 请参阅此产品页面:高速半导体激光管驱动器。
多模光纤耦合半导体激光管
a) 4 个多模光纤耦合半导体激光管系列
多模光纤耦合半导体激光管基于广域的一侧,它发射的半导体激光管芯片最初是由半导体晶圆设计和制造的。
多模光纤耦合半导体激光管有 4 种类型(见图 18 和图 19):
- 单发射器:当半导体激光管芯片被隔离时,组装在子底座上,并单独封装在半导体激光管模块中。 我们在这里讨论的是 15W 的功率耦合到一个 105(纤芯)/125µm(包层)半导体激光管中。
- 多发射器:当多个发射器分离并与多模光纤中的其他隔离发射器光耦合在一起时(图 19-右)。 因此,输出功率水平可扩展到数百瓦,并且光纤的尺寸可以保持较小,如 100 或 200 µm 纤芯。
- 单巴条:当多个发射器作为一个单巴条(图 17)并组装在一个半导体激光管模块中。 我们在这里讨论的是约 50 W 的功率耦合到 200 µm(纤芯)/240 µm(包层)半导体激光管中。
- 多巴条:当多个巴条组装在一个大型水冷封装中并耦合在大直径多模光纤中时。 我们在这里讨论的是耦合到例如 600 或 800 µm 纤芯多模光纤中的 100 W甚至 KW。
所有这些半导体激光管均有不同的封装:
值得注意的是,当考虑到各种系列时,典型的电压和电流水平如何变化:
- 典型的单一发射器的电压电平为1.5V,电流为15A。
- 对于多发射器半导体激光管,发射器是串联组装的。 这意味着电流水平不会改变(通常最大 15 A),但是电压会随着发射器数量增加而增加。 (例如, 4.5V/15A的60 W半导体激光管)
- 一个半导体激光管巴条将所有发射器并联组装在一起。 因此,电压水平不变,但电流水平可以轻松达到 45 或 50 A。
- 同样,当将多个巴条组装在一起时,它们是串联组装的,因此电流水平(例如 45 A)不会改变,但电压会随着巴条数的增加而有规律地增加。
b) 结构和尺寸
图 19 显示了一些单元件和多元件半导体激光管的结构示例。 可以看出,分离几个半导体激光管元件并将它们的激光整合到一根光纤可以增加光纤的功率/表面。 另一方面,半导体激光管巴条非常不对称,使得将光注入圆形光纤变得更加困难。 这使得激光巴条技术的最小光纤直径通常比多元件技术的更大。
c) 光谱特性
请注意,许多应用(例如在 976 nm 处泵浦 Yb3+ 等稀土离子)需要稳定而且窄的半导体激光管发射光谱。 这种波长稳定性需要控制半导体激光管的温度,还需要半导体激光管配备一个额外的波长稳定元件。 该元件通常是用于多模半导体激光管的 VBG(体布拉格光栅)。 VBG 是集成在半导体激光管封装中的专用玻璃片。
d) 驱动多模半导体激光管
驱动多模半导体激光管是一项艰巨的任务,需要专门的产品。 尤其是对于>10W输出功率半导体激光管,热冷却是一个很大的问题。 这是一款专为光纤半导体激光管驱动而设计的的半导体激光管驱动器,与研发和全光纤激光器产品集成兼容。
AeroDIODE 的 CCM(冷却和控制多模)(见本页:高功率半导体激光管驱动器)针对驱动一个或多个多模泵浦半导体激光管(单元件或多元件器件)进行了全面优化。 它配备了一个TE冷却器,可以调节半导体激光管的温度。 它是一种风冷设备,与高达 200 W 光功率的半导体激光管兼容。
一个模块化的激光电子产品系列,几乎兼容任何类型的光子系统。
AeroDIODE研发了一整套电子驱动器,能够构建几乎所有类型的基于半导体激光管的光子系统。 这些驱动器可以一起通信,并且可以控制任何类型的脉冲或连续模式的半导体激光管。 该设计是为了使它们能简单地集成到一个紧凑的原型中。 方便设计人员快速开发光子系统。